Tests of Gravity with Lensing, Galaxies and Large Scale Structure

Bhuvnesh Jain
University of Pennsylvania

Collaborators

Pengjie Zhang (Shanghai)

Jacek Guzik (Penn)

Fritz Stabenau (Penn)

Alex Borisov (Penn)

References

Jain & Zhang (2007) arXiv:0709.2375 Hoekstra & Jain (2008) arXiv:0805.0139 Stabenau & Jain (2006) arXiv:0604038

Outline

- Modified gravity scenarios
- Light deflection in modified gravity
- Combining cosmological observables to test gravity
- Tests of gravity on galaxy and cluster scales

Modified gravity theories

Cosmic acceleration may be due to dark energy or to a modification of the Friedman equation

Goal: "Weaken" gravity at late cosmic times and large scales

Alternate gravity theories are not easy to construct!

And they must pass early universe and solar system tests

Types of theories:

$$H^2 - \frac{H}{r_c} = \frac{8\pi G}{3} \rho$$

- Higher dimensional theories, e.g. DGP:
- Additional terms in the action: f[R]:, e.g. powers of R or 1/R

Constraints on Gravity

Below 1 AU

- Lab tests on mm scales
- Solar System: lunar ranging
- Binary pulsar

1Kpc-1 Mpc

- 1-50 Kpc: Galaxy rotation curves, velocity dispersions
- 50-500 Kpc Satellite galaxy dynamics
- 50 Kpc-10 Mpc Galaxy-galaxy lensing
- 100 Kpc-1 Mpc Galaxy clusters: X-Ray-Dynamics-Lensing

10-1000 Mpc

• Large-scale structure: current constraints are weak, model-specific

Early universe: Nucleosynthesis, CMB

Testing gravity on large scales

- Homogeneous solution must give correct distance-redshift relation: assume H(z) matches Λ -CDM
- The relation of perturbed observables to H(z) may be altered:
 - Metric potentials ϕ and ψ
 - Density and velocity perturbations δ and $\theta = \nabla \cdot \mathbf{v}$ (from $\delta T_{\mu\nu}$)
- The perturbed variables are altered at low z and large scales.
 - → Large-scale structure observables must be completely re-interpreted!
- Their behavior approaches GR on solar system scales. Where the transition occurs is largely unknown (10kpc-10Mpc?).

$$ds^2 = -(1+2\psi)dt^2 + (1-2\phi)a^2(t)dx^2$$
 Metric

$$\nabla^2(\psi + \phi) = 8\pi G_{eff} a^2 \overline{\rho} \delta$$

Poisson

$$\eta = \psi/\phi$$

 $\eta = \psi / \phi$ η and G_{eff} can be scale and time

$$\delta'' + 2H\delta' - \frac{8\pi G_{eff}}{1 + 1/\eta} \rho a^2 \delta = 0$$

Different growth factors for density and metric potentials:

- Density growth factor: $D_{\delta}(z,k)$
- Lensing growth factor: $\mathbf{D}_{\psi+\phi} \propto G_{eff} \mathbf{D}_{\delta}$,
- Dynamical growth factor $\mathbf{D}_{\psi} = \eta/(1+\eta) \mathbf{D}_{\psi+\phi}$

Jain & Zhang 07; Hu & Sawicki 07, 08; Zhang et al 07; Bertschinger & Zukin 08...

Probes of metric potentials

Dynamical probes (blue) measure Newtonian potential ψ Lensing and ISW (red) measures $\phi + \psi$ Constraints from current data are at 10-50% level (w/ Guzik... in prep.)

Modified gravity: Sociology

Astronomers *bitter* with **Dark Energy**-driven cosmology (and reportedly clinging to their favorite galaxy) can cheer up at the prospects of testing gravity.

- The internal dynamics and lensing properties of galaxies and clusters matter!

 Fundamental physics can be advanced without disparaging galaxies as convenient points (BAO snobs) or wallpaper (lensing elites).
- Observables are valuable even if their **Fisher forecasts** for Ω and w are not the very best (e.g. ISW, bulk flows).

Will modified gravity be the reconciler of **blue-collar** astronomers and **elitist**, **'fundamentalist'**(arxiv:0704.2291) cosmologists?

- Will string theorists, who find our 3-dimensional universe so imperfect, now be found palin' around with Joe the astronomer?
- Must we "redistribute the wealth" to diverse experimental approaches in order to make progress socialist cosmology anyone?

You betcha!

- Modified gravity scenarios
- Lensing: light deflection in modified gravity
- Combining LSS observables to test gravity theories
- Tests of gravity on galaxy and cluster scales

Lensing: what we assume about gravity

• Deflection angle formula $\alpha = -2 \nabla_{\perp} \phi_{2d}$ from Geodesic eqn

Generalize
$$\Rightarrow \alpha = -\nabla_{\perp}(\phi + \psi)_{2d}$$

• How the observable convergence κ is related to mass fluctuations:

$$\kappa = \frac{1}{2} \left(\partial_1^2 + \partial_2^2 \right) (\phi + \psi)_{2-d} = G \overline{\rho} \int dz \ W(z, z_s) \delta(z)$$
 Poisson eqn

Generalize
$$\rho \int dz \ G_{eff}W(z,z_s) \ \delta(z)$$

• The geometric factor $W(z,z_s)$ can be taken as fixed.

Magnification and Shear

Weak lensing → Magnification ≅ Convergence (projected mass density)

Lensing tomography

Shear at z₁ and z₂ given by integral of growth function & distances over lensing mass distribution (Hu 1999)

Lensing power spectrum

The theorists version of a future lensing measurement Takada & Jain 2004

How does lensing test gravity?

- By itself, lensing measures the sum of metric potentials
 - Lensing power spectrum can only test specific models

Robust Test

- Lensing tomography \rightarrow how $D_{\psi+\phi}$ evolves with redshift
 - This is the primary test for dark energy models as well
- ullet Relation of lensing observables to matter correlations ullet $G_{\it effective}$
 - Provided there is a tracer of the mass with known bias
- Cross-correlations: galaxy-lensing plus galaxy-dynamics
 - Can give a model-independent measure of ϕ/ψ

Wide Field Lensing Surveys

- Ongoing: CFHT Legacy Survey
 - Ω_s =200 deg²,n_g=30 arcmin⁻², 5 filters → Tomography

Future (start by ~2009+) surveys

- PanSTARRS1, KIDS, DES, Subaru...
 - DES telescope: 4m mirror, FOV 3 deg²
 - Survey: 5000 deg^2 in 4-5 filters to \sim 24th magnitude (z \sim 1).
 - Dark energy probes: Lensing, Galaxy clustering, Clusters, SN
 - Lensing measurements at few percent level from ~1-100 Mpc

Future (start ~2014+) surveys

- SNAP, DUNE, LSST
 - LSST telescope: 8.2 m diameter mirror, FOV 9.6 deg².
 - Survey: $\Omega_s = 20,000 \text{ deg}^2$ in 5-6 filters to $\sim 26th \text{ mag}$ (z \sim 2)

- Introduction to modified gravity scenarios
- Lensing: light deflection under modified gravity
- Combining LSS observables to test gravity theories
- Tests of gravity on galaxy and cluster scales

Redshift Space Distortions

From redshift surveys, can measure three different power spectra

Lensing and Redshift Space Power Spectra

Expected measurements from upcoming surveys. Guzik, Jain, Takada, in preparation

Preliminary Forecasts for G, n

Observational prospects for LSS tests

- For robust modified gravity tests, want potentials and density and velocity information at the same scale and redshift.
- Redshift $z \sim 0.3$ -1 and $\lambda \sim 1$ -200 Mpc for next generation surveys (\sim 5 years).
- $P_{\gamma\gamma}$, $P_{g\gamma}$, P_{gg} measurable to ~ few percent accuracy with DES/Subaru/PS1 (sub-percent with LSST/EUCLID/JDEM)
- P_{gv} will be at 5-10% accuracy with spectroscopic surveys like BOSS; sub-percent accuracy with next generation surveys like SKA
- Several other probes such as ISW may not reach percent level accuracy, but provide useful complementary information

Jain & Zhang 07; Zhang et al 07; Percival & White 08

Nonlinear Regime

- Small scale regime may provide best tests of gravity
- Theoretical predictions are specific to models and are difficult! But for f® type models some simplifications hold:
- Nonlinear power spectrum for "simple" modified gravity can be predicted using the linear power spectrum + nonlinear mapping tested for GR
- And in the quasilinear regime, the bispectrum can be obtained from linear power spectrum to better than a few %

Borisov & Jain 2008

Stabenau & Jain 2006 Shirata et al 2007; Laszlo & Bean 2008 Oyzaizu, Lima, Hu 2008: Chameleon regime

- Introduction to modified gravity scenarios
- Lensing: light deflection under modified gravity
- Combining LSS observables to test gravity theories
- Tests of gravity on galaxy and cluster scales

Galaxy and Cluster Scales: Four Tests

- A. r~10 kpc: Einstein Rings + Stellar velocity dispersion
- B. r~100 kpc: Galaxy-galaxy lensing + Satellite dynamics Statistical
- D. r~1 Mpc: Individual cluster masses from dynamics and weak lensing

Halos: 101.2

•*Lensing*: Einstein Rings, Shear, Magnification: Measures (φ+ψ). Relation to mass involves Poisson eqn.

•Dynamics: Velocity dispersion, Rotation, Infall: Measures Newtonian potential ψ

$$M_{lensing} = (1 + \gamma)/(2\gamma) M_{dynamics}, \qquad \gamma = \psi/\phi$$

- •If we use the same set of galaxies, can compare halo dynamics and lensing without needing the relation of galaxies to host halos.
- •Cosmologists would talk about cross-power spectra (and insensitivity to bias factors): natural extension to large scales.

A. Galaxies: r~1-10 kpc

 $\gamma = \psi/\phi = 0.98 + /-0.07$ from SLACS Einstein Rings + velocity dispersion *Bolton et al 2006; Remodeling of the dynamics, in preparation!*

Galaxy-galaxy lensing

Galaxy-galaxy lensing

C. Group/Cluster Masses: Dynamical

- •Stack velocity differences of satellite galaxies around BCG
- •Richer clusters → wider velocity histograms → higher mass

C. Group/Cluster: 1 Mpc test

Sources of systematic errors:

- velocity bias
- velocity-to-mass error
- photo-z error
- shear calibration error
- mass modeling error

Johnston et al 2007

What do we know about gravity?

Errors on measurements of gravitational potentials and G Red: current, Blue: future